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The dynamics of the energy eigenvalues of a single resonance, two-mode quantum Hamiltonian with varying
resonance coupling is studied. The resonant quantum states are linked to straight-line parametric level motion
in the level dynamics. On the basis of the analogy to the periodic orbit scarring of eigenstates giving rise to
linear parametric level motion, we suggest that the resonant states give rise to such soliton-like features in
the level dynamics. As a result, resonant states for a given polyad constitute a solitonic “fan” structure
manifesting throughout the energy regime. Isomorphic fans, at specific polyad intervals, are identified for
which the level velocities of the corresponding states are related by a translation along the classical resonance
line. An analysis of the level velocities for isomorphic states indicates that the level velocitiesnof a
resonant state beyond a certain critical coupling strength scale with the pohaRl™ ™2, Numerical studies

on a 1:1 resonant system confirm the expected scaling and su@§ges?x) as the asymptotic velocity of a
state|P;vLJ wherev is the degree of excitation of the state. Persistence of the fan structure on the addition of
another independent resonance leads to the possibility of understanding and assigning highly excited states
via the scars of the independent resonances.

Introduction one implies the existence of the other. Thus, given the key role

Classical-quantum correspondence for resonant systems haglaye_d by resonances ir_' (_Jletermining the natur_e of the Che“?ica'

been an area of considerable interest for quite some time and cactions, itis not surprising that they are crucial for analyzing
. ; . .~ the spectra of highly excited molecul&sL>

continues to attract attention from the chemical physics ) ) - o
community!~4 One of the main motivations for such efforts, Itis clear that ranongllzmg and, hence, assigning t_he spectral
apart from the fundamental nature of the problem and the featur_es of highly excited molgcules require a_detaned under-
ubiquity of resonances in physical phenoméigthe fact that standing of the nature of the eigenstates and el_genvalues Qf_the
effective resonant Hamiltonians arise naturally in the attempts féSonant system. From a theoretical standpoint, a promising
to understand the spectra of highly excited polyatomic mol- @PProach is to study the classical, semiclassical, and quantum
ecules?® The dynamics of highly vibrationally excited molecules dynamics of the resonant Hamiltonians. This is ev_|dent from
is very different as compared to the dynamics at low energies the numerous recent studié&*°+’on small polyatomics. The
due to the pronounced manifestation of the anharmonicities. At @dvantage of such a classical-quantum correspondence-based
such high levels of excitation, the usual low-energy description 2PProach is that the various dynamical routes to IVR can be
based on harmonic, noninteracting normal modes is too 'dentified. A dynamical assignment can then be provided for
simplistic. For example, recent studies the bending dynamics the states WhICh oﬁgrs the possibilities of exploiting potential
of C, Hp at around 15 000 cri of internal energy reveals local ~ Mode specific reaction pathways.
bend and counter-rotation modes which are unrelated to the low The majority of the work done from a classical-quantum
energy normal trans and cis bend motions. The marked changecorrespondence perspective can be broadly classified into two
in the dynamics happens at energies where zeroth-order normamain approaches. One approach is to explore the consequences
modes begin to interact strongly, mediated by nonlinear of the classical resonance on the eigenvalue spectftufhand
resonances arising from the anharmonicities of the potential. the second pertains to the signatures of the underlying reso-
For instance, large amplitude bending motion in the HCP nances manifesting in the eigenstates of the sy$t€rif.173537
molecule have been identified experiment&which arise due ~ As far as the latter approach is concerned, it has been shown
to a 1:2 Fermi resonance between the bending and the CPthat a knowledge of the phase space structure of the classical
stretching motions at about 13 800 chabove the ground  limit resonant Hamiltonian in terms of the periodic orbit$;!’
state'® Modes interacting resonantly can exchange energy, andresonance zoné&3#43and higher-dimensional tori is central
the presence of many such resonances between the variou$o our ability to assign the quantum states. Enormous progress
modes in a molecule leads to the phenomenon of intramolecularhas been made in the case of single-resonance Hamiltdfiidhs.
vibrational energy redistribution (IVR}:13 The resulting For example, in such instances, determination of the periodic
complicated spectrum has encoded in it the signatures of theorbits and their bifurcation structute“® allows one to classify
various resonances present in the system. In this sensethe eigenstates according to the underlying classical dynamics.
resonances and energy flow are synonymethe presence of  Certain special multimode, multiresonant systems which possess
enough time-independent constants of the motion, i.e., poly-
T Part of the special issue “William H. Miller Festschrift”. ad$354 can also be usefully analyzed from the periodic orbit
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perspective:>55However, two important observations are that crossings. It was established that the parallel curves and narrowly
the required number of polyads might not always exist and avoided curves corresponded to resonant and nonresonant states,
periodic orbits are not sufficient in many instantesor respectively. In this work, we take a different approach and
understanding the eigenstates. In addition, a significant limitation identify characteristic patterns of the energy levels of a single-
comes from the fact that detailed knowledge of the phase spaceresonance Hamiltoniad = Ho+ 7V as the resonant strength
structure of three or higher degrees of freedom resonantis varied. It is now well-knowft~73 that the evolution of th&\
Hamiltonians is very spar$é Even if one has the phase space energy levels with the coupling parameter can be mapped on
structure at hand, techniques such as comparing the surface ofo a Hamiltonian system with the energy levels correpsonding
section with the Husimi functid of a given eigenstate become to positions ofN psuedoparticles and the coupling strength
very difficult to implement. In this paper, the focus is on the corresponding to a psuedotime variable. The resulting classical
former approach, which involves identifying the fingerprints of Hamiltonian describing the level and eigenstate dynami¢s$ of
the various resonances on the eigenenergy spectrum. has been showfto be integrable since the equations of motion
A number of researchers have investigate? the effect of ~ constitute a generalized Calogeftdoser* 7 system. Although
resonances on the energy levels of fixed Hamiltonians. Here, We Will not make an explicit use of the integrability structure,
one studies the system for a fixed value of the coupling strength the prime focus will be on identifying the fingerprints of a
and varying energies. Again, impressive results have beenclas_smal resonance on the Iev_eI velocities. This ch_oice is
obtained for single-resonance Hamiltonians in terms of under- Motivated by two factors. The first one has to do with the
standing the spectral features, semiclassical quantization andumerical observatiofi of energy diabats varying linearly at
analysis of the energy splittings. However, multiresonant large values of the poupllng constant. The s.econd. factor is
systems have not received much attention from this point of related to the extensive work doffeon uncovering universal
view. Sizable work has also been done from a different @nd nonuniversal characteristics of nonintegrable Hamiltonians
perspective, wherein one explores the signatures of resonancer systematic studies of the level velocities and their correla-
on the energy levels as a parameter in the Hamiltonian is ONS.
varied?3-34 The importance of such works lies in the fact that We derive an expression for the level velocity associated with
states can be approximately assigned by following the energyan eigenstate of a single-resonance Hamiltonian (section I1). It
diabats from a known limit to the actual physical Hamil- is well-known that single-resonance Hamiltonians are classically
tonian®-61 In such energy correlation or equivalently level integrable due to the existence of a conserved quantity called
dynamics studies, the focus was predominantly on the nature@s the polyad numbel. Consequently, all of the quantum
of avoided crossings and their distributions. Earlier st#gié% eigenstates can be assigned. Analyzing the expression for the
argued that the avoided crossing between pairs of energy leveldevel velocities and noting the finiteness of the polyad number,
implied that the corresponding states were involved in resonance One anticipates that the level velocities will, for some: zc,
From this viewpoint, overlapping avoided crossings would be become constants. A rough estimate for the critical coupling
the ana|ogue of Over|apping resonances in the under|ying constantr; is provided in section ILA. In general, more than
classical system. Thus, it was conjecti#dthat overlapping one resonant state exists for a given value of the polyad, which
avoided crossings would lead to a criterion for quantum is characterized by an excitation index. The level velocities of
stochasticity in analogy to the Chirikov criterfrfor classical ~ the group of states belonging to a specific polyad depend on
stochasticity threshold. Although the conjecture has some the excitation index and give rise to a typical “fan” structure as
support for time-independent systems perturbed by a periodic? iS varied. On the basis of previous wotkshowing the
time dependent potentiéil Jater studie¥-34indicated that states ~ €xistence of isomorphic states occurring at definite polyad
involved in an isolated avoided crossing were not neccessarily intervals, it is expected that the “fan” motif would repeat itself
resonant. In the vicinity of an avoided crossing, the state mixing throughout the energy range. An analysis of the level velocities,
could as well be due to quantum tunneling. In fact, dynamical as_performed in section 11.B, indicates that a simple relationship
tunneling*%5 has been proposétas a possible route to [VR ~ €Xists between the velocities of the isomorphic states at any
in a certain class of molecules. Moreover, in case of multi- 9ivenz. As a consequence, the velocity of a given state can be
resonant systems, the two state avoided crossing scenario cagPProximately predicted from the velocity of the preceding
get superseded by a three-state chaos-assisted turffieling ~ iSomorphic state. Far > 7. the analysis in section Il.B suggests
process. Energy splittings due to chaos-assisted tunneling ar¢hat the asymptotic velocities for a genemah resonance scale
fairly erratic¥”.7°and in particular can show algebraic dependence With the polyad a2 in section Ill, we study a model
on rather than the usual exponential dependence. Hence, intWo-mode 1:1 Hamiltonian and numerically confirm the predic-
absence of a clear relative measure of the competition betweerflons. In particular, it is shown that, for a 1:1 resonant state
quantum and classical routes to state mixing, associating anith excitation index, belonging to a polya®, the asymptotic

isolated avoided crossing with the classical resonance is VelOCity is well approximated by — 2v). Section IV concludes
premature. with a discussion on the possibility of using the present method

Given that avoided crossings do not unambiguously signal fsc;/rsir(r:i]ynammal assignment for the states of a multiresonant
o :

the presence of a resonance, one asks if there is any charac-
teristic pattern in the level dynamics of a Hamiltonian that is ) ) o
indicative of a resonance. The primary goal of this paper is to !l. Level Dynamics for Single-Resonance Hamiltonians
answer the above question. There does exist an earlier?vork

wherein one such pattern was identified by investigating the
behavior of the energy levels of a coupled oscillator system as
the corresponding classical system went through a resonance. + +

The pattern consisted of clusters of levels, each containing a Ho(n,a,a’) = Hy(n) + 7V(a.a) 1)
number of curves that run roughly parallel to one another and

a number of curves that undergo pairwise narrowly avoided whereHy is the zeroth order Hamiltonian

In this paper, we focus on a two-mode, single-resonance
guantum Hamiltonian of the form
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1 1\2 A few important observations can be made about the level
Ho(n) = Z Wy (nk + ‘) + Z akk(nk + ‘) + dynamics ofH by understanding the low and highlimits of
k=1.2 2 T2 2 eqg 6. First, note that the entiredependence is in the basis
odn. + 1 n +} @) coefficients. For small values af most of the states will be
12°1 2 nonresonant, ank,(z) ~ 0. As the value of is increased, the
coefficientschq(7) also change, making the level velocities finite
V is the resonant coupling term, ands the coupling strength. ~ for states that come under the influence of the resonance.
The operatorsy, a, anda’ are the number, annhilation, and However, a finite value of the polyad associated with a resonant
creation operators for the two modes, respectively, which satisfy state implies that the number of zeroth order states that
the standard harmonic oscillator relatioras,ﬁ] = . For a participate and contribute to the resonant eigenstate is finite.

m:n resonance, the form df is given by This leads one to expect that beyond a certain critical coupling
strengthz,, the level velocity should become relatively insensi-
V= (a)"(@)" + (ay)n(a)™ (3) tive to changes irc. Thus, in the limit of larger the level

velocities are constants, i.eX.(t) ~ vo With v, being
It is well-known that the above single-resonance Hamiltonian independent of. An estimate fow, would require one to know
has a conserved quantity known as the polyad nuS#$éi his the asymptotic value of the basis coefficieatg(z) for largez.
is due to the fact that the polyad opera®r= (n/m)n; + n, A tempting choice is to setna(r) ~ N5 for all n, with Np
commutes with the Hamiltoniad. As a result, the Hamiltonian ~ denoting the number of zeroth order states in a given pdfad
is block diagonal with the blocks characterized by the eigen- However, such a choice is erroneous since a single-resonance

values ofP. Hamiltonian is classically integrable due to the existence of the
In the rest of this paper, we will denote the eigenstates and polyad. Hence, one expects a regular spectrum associated with
the associated eigenvalues of the Hamiltortiaby |o(7)Cand the quantum Hamiltonian. On the other hand, only in the

Xa(7), respectively, wittH(7)|a(t) 0= xq(7)|o(7)[] The objective extreme statistical limit does one anticip@te.(r) ~ N;l’z.
of this work is to study the level dynamics, i.e., the evolution Thus, for an integrable system, in general, such an approxima-

of the eigenvalueg,(z) with resonance coupling strengthn tion is invalid. Nevertheless, it is reasonable to assume that the
order to identify the signatures of the underlying classical coefficients and hence the product of coefficients in the
resonance. The eigenstates and eigenvalues for a giaee expression fok,(r) attain a limiting value around, leading to

obtained by numerically solving the Scldinger equation in constant level velocities for > t.. One way of finding the
the zeroth order number badisl] Thus, one can express the asymptotic value of the coefficients is to investigate the large
eigenstate in terms of the zeroth order number basis@$] T asymptotics for the corresponding Saflirgyer equation which
= YnCna(7)|N0 Eigenstates of a single-resonance Hamiltonian is known/®in a certain limit, to be the Mathieu equation. Such
have to respect the polyad constraint, and hence, we can bean approach would also yield the critical coupling constant
more precise and write(t)0= Y nepCna(7) N which is of significant interest for understanding the level
In the study of the level dynamics ¢f(z), an important dynamics of the system. In this work, we do not perform such
quantity is the level velocity,(7) = dx,/dr associated with an analysis and provide a rough estimatefomith the focus
the statgo(z)[) The level velocity for a given state, as obtained being more on a phenomenological description of the level

using the HellmanaFeynman theorem, is dynamics. Analyzing the expression $q(7) for specific classes
of resonant states, as shown below, one predicts that fairly
Xo(7) = [0(7) |V]a(z) [ 4) simple expressions should exist foy.

_ _ A. Estimate for 7. Based on the Chirikov Approximation.
Inserting complete sets of states into eq 4 the expression forAs pointed out in the previous section, the constancy of the

the level velocity can be written as level velocity fort > 7. is due to the finiteness &. Intutively,
one anticipates that if the classical resonance widtt) for ¢
X, (7) = Z lo(z)|nn|V|n'[h'|a(r) O = 1. is on the order of the number of zeroth order quantum
neP n'el

states for a giverP, then the coefficientg,(7) of the state
|oi(r)Cwould not change much with increasingThis suggests

— *
N r; n;,, Cra®) Crro(T)V i ®) that 7. can be estimated by setting(r) =~ Np, with w(z)
obtained by a Chirikov analy$of the classical resonance
where we have denoted the matrix elemamiv|n'Cby V. Hamiltonian. o .
Due to the polyad constraint, it is clear that the prodrjgttyq To obtainw(z), we construct the classical limit Hamiltonian
vanishes unlesB = P'. In addition, asVy,y also vanishes ifi for the two-mode quantum HamiltoniaH(z) by using the
= n', one obtains standard corresponderiée
nneP a<|Y2egif PN @)
Xon(r) = Z Cza(r)cn’a(t)vnn’ (6) . i .
el where (,0) are the classical actierangle variables. The

) ] ] ) resulting classical limitn:n resonant Hamiltonian is
as the level velocity associated with an eigenstage)’] Note

that the presence of the matrix _eIemb’ﬁtr gives a str,ong local H= Z (@ + 04 D) + aglyl, +
character to the level velocity sindg, = 0 if n andn’ are not KET2

connected by the resonance. It is clear from the above expression

that if the statéa(r)0s nonresonant, thex,(r) = 0 and hence, 2tA/1," 1, cosmd, — nb,) (8)

as expected, there is no change in the energy of the state as the

coupling strength is varied. In what follows, we will take all The two-dimensional Hamiltonian above can be transformed
the coefficients to be real without any loss of generality. to a one-dimensional Hamiltonian by using the generating
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functiorf!

1
Fo(1,3,.0.0) = E\]p(ma1 —n6,) + 16, 9)
which generates a canonical transformatib@)(— (1,J,,¢.0).
The resulting one-dimensional classical limit Hamiltonian is

_Yq2_1 = mz(2l |72
H=137 - 5@+ Qp, +c+ 23T -3 cosp

(10)

with C = w2l + o)l 2, Q= Nw2 — M1, Q = 2na22 — M2,

y = MPou1 + N202 — Moy, andz = (n”f“n”Z*(mJ’”))l’zr. Itis
clear that the actioh= (n/m)l; + I, is a constant of the motion.
Thus, the classical limit Hamiltonian is integrable, drid the
classical analogue of the polyad numiger
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families. An analysis of the single-resonance Sdirger
equation, in terms of Floquet solutions of the resulting Mathieu
equation, reveals that such isomorphic states appear with a
polyad spacingAP = (mP + n) for a generaim:n case. The
classical-quantum correspondence is highlighted by the appear-
ance of the slope

_ Noy,— 2mo, ;.

ma, ,—2N0y, (14)
of the classical resonance line in the expressiom\®r Clearly,
the slopeP itself is a function of the anharmonicity parameters
involved in the zeroth order Hamiltoniat.

The above discussion suggests that the level velocities for
isomorphic states should be related in a simple fashion. Consider
two isomorphic states which belong to the poly&dandP +

_To estimate the resonance width, we expanded the one-Ap, The basis coefficients of these states are nonzeno &
dimensional classical Hamiltonian about the resonant value of andn P + AP, respectively. Since the states are isomorphic,

I = J;, = y~}Q + QI) to obtain the resonant Hamiltonian
H,(1,03,,0) = H(l ,Jpr+(§JP,p) — Hy(l ,Jp') ~
1 2 2 \m/2 2l _qr n2
Z/(03)2+21(3)) (F Jp) cos » (11)
The HamiltonianH; is recognized to be the standard one-

dimensional pendulum Hamiltoni&&8and thus, the width is
given by

_(167\12, . af2l F\n4
wee) = ()@ - 3) (12)
At this stage, we set/(t;) = Np to obtain an estimate for the
critical coupling constant as

Te = My NeZ(M J) 520 = n J)) ™ (13)
with rm, = (28-(MM)~12 For single-resonance systenis,
scales linearly withP, and hence, the critical coupling scales
asP and vP

one expects

CSAD)CL(T) ~ ) Cc(7) (15)
In the above equatiom = n + dp, with a similar expression

for n" anddp = (mmP ). In other words, a state at poly&ds
displaced along the classical resonance line to a isomorphic state
at polyadP + AP. In general, the approximation eq 15 is valid

for moderate values of the coupling strengthrhis is due to

the fact that the existence of isomorphic states requires the
resonance width to vary slowly over the entire action space.
Typically, the resonance width increases as one goes to higher
energies (hence actions), and thus, the resonance strength felt
by states aP+AP can be substantially larger. This leads to a
breakdown of the approximation since the basis coefficients at
n as compared to those at+ dp are quite different. It is
possible to come up with corrections to eq 15, but we will not
pursue such schemes in this work. However, it is important to
note that for states that exhibit localization at aRy the
approximation is a valid one, and the level velocities, as shown

for the 1:1 and 1:2 resonant systems, respec- pelow, can indicate the existence of families of localized

tively. On the classical side, it is expected that the Poincare jsomorphic states.

surface of section should be filled up with resonant toritfer
Tc.
B. Level Velocities for Isomorphic States.The states of a

single-resonance Hamiltonian can be completely assigned

because of the existence of the polyad nunfhefFor a given

value of P, there can be many resonant states, and the total

number of states is related to the classical widtl) of the
resonance zone. The manifold of resonant states for fixed
can be characterized by an excitation quantum numizerO,

Within the approximation eq 15, one immediately obtains
the level velocity of the isomorphic state + AP;as

n,n'eP+AP
z C%Q(T)C%Qx(f)vﬁﬁ'

n=n'

K(z;P + AP) =

n,n'eP

~ () ()
~ Z Cntx(r)cn%a(f)vn +dp, '+ d,

n=n’

(16)

1, ..., related to the number of nodes for the state. Thus, a general

resonant state will be denoted [;v[] with an associated level
velocity x%)(z;P).

Recent work®82 has shown that the slope of the classical
resonance center line, as viewed in the quantum discrgpece,

is an important parameter for understanding the resonant states.
In particular, as is well-known, quantum states organize
themselves around the classical resonance line. However, a more

To relate the level velocities of two isomorphic states, consider

the difference in the velocities

(@) = x(1;P+AP) — X (x;P)

n,n'eP

~ Z CEro)n(t)CS%L(T)[Vn+dp,n’+dp - Vn,n’] (17)
nn

detailed observation is that isomorphic resonant states appear

with a periodicity identical to that of the slope of the classical

The matrix elemenV¥,, for a generaim:n resonance has the

resonance line. These states are isomorphic in the sense thagtandard form

they have very similar amplitude distributions in the zeroth order

basis. Moreover, a study of the Husimi distribution functions Vi, = 4/V(N.N2)0y n 1O, n,n T \/\_/(nl’nz)an'l,nﬁmén’z,nzfn

of the isomorphic states indicatédhat they “live” in identical,

(18)

resonant, regions of the phase space. It is thus possible to B
organize the entire set of states in terms of such isomorphic whereV(n;,n;) andV(n.,ny) are polynomials of ordem andn
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in n; and ny, respectively. The form o¥,, suggests that the
second-order variation N, with n is fairly small, i.e.,A2V
~ O(1/n). Thus, the quantity\n+d,n+d, — V) is essentially
constant over a range ofand depends primarily ot andP.
This implies that one can write

ox(z) ~ 2c(D)f(P P) (19)
where the form of the functiofi is specific to the resonance
and

<

nl,nz;a(r)cg?fm,rﬁn;a(r) (20)

o= 3

ny,NpeP

Hence, given the level velocity of the state;v[] the above
relation shows that one can approximately predict the level
velocity of the isomorphic stat® + AP;vOwith AP = (mP +

n) for a givenz. However, at this level of approximation, the

Keshavamurthy
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value of the predicted level velocity is accurate for localized Figure 1. Level dynamics for the 1:1 resonance system. The fans

states. In particular, here one expects the predicted velocities

to be accurate for the = 0 states only. The specific form of
the functionf can be worked out for the various resonances,

and for a 1:1 resonance, it is easy to show that to leading order

(P P)~3(1+P)=2AP 1)

Thus, for the isomorphic states with= 0 corresponding to a
1:1 resonance, we have the result thgf)(7) ~ c9()AP.

Note that the above analysis is incomplete in the sense that

the v dependence of the level velocities is not obtained. As

discussed earlier, the determination cﬁ’)(r) in the large
coupling limit is nontrivial. However, the eq 20 can be

interpreted® as the overlap between the state and another

fictitious state at the same value Bf obtained by shifting the
actual state. This suggests, at least for 7, that the state
with v = 0 has the maximum velocity. This interpretation in
terms of overlaps suggests thefl(zr) ~ 1 for 7 > 7.
Increasingv will lead to smaller overlap due to the sign

associated with each polyad are indicated by *. The respective polyad
values are also shown in the figure. The number of states in each fan
increases since the resonance width increases with increasing energy.

E(7) g

Figure 2. Level dynamics for the integrable 1:1 case. The fan formed
by the states belonging to the polyBd= 6 is shown. The solid points

mismatches, and hence, the velocity decreases with increasingrrespond to resonant states as identified in the:)(space.

v. Thus, for a given set of states in a poly@dthe asymptotic
velocities decrease with increasimgand this gives rise to a
diabatic fan-like structure in the energy correlation diagram.
For now, in the large coupling limit, we can combine the result
9 ~ 1 with 0xX? = cPAP to obtain the asymptotic level
velocity of the 1:1 resonant stae;0C0as
v, =xP~P (22)
As discussed above,, for states with nonzere will decrease
with increasingv. In the next section, computational studies
suggest that in the large coupling limit the asymptotic velocity
of a 1:1 statgP;vis approximated rather well by, ~ (P —
2v). Analysis along similar lines for a genenatn resonance
system indicates that in the large coupling limit the asymptotic
velocity of a statgP;0C0obeys the rule

v, O P2 (23)

Ill. Example of a Model 1:1 System

In this section, we compute level velocities for a model 1:1
resonant Hamiltonian witlw; = 1, w, = 0.8, a;; = —0.04,
a2 = 0, anday, = —0.02. With these parameter values, the
slope of the classical resonance line B = +2. Thus
isomorphic states are expected with a polyad spagifg= 3.

In Figure 1, we show the variation of the energies with the
resonance strength Two important features can be identified
from Figure 1. First, the cluster of states associated with a polyad
P is seen to form a fan-like structure. The states in this fan are
undergoing large variations with the coupling strengt8imilar-
looking fans appear with a periodicity of 2, which is a
consequence of the slope of the classical resonance line. It is
expected that isomorphic states will show isomorphic level
dynamics. The second observation, evident from Figure 1, is
that for larger the level velocities are becoming constants. In
fact, for large values of, one sees streaks of straight lines enly
some with negative slopes and others with positive slopes. As
discussed in the previous section, the negative slopes, i.e.,
negative asymptotic level velocities are associated with large
states.

We now focus on one of the fans to show its structure and
understand the dependence of the asymptotic level velocities
ve. In Figure 2, the fan associated with the states belonging to
the polyadP = 6 is shown. Four states correspondingvte
0,1,2,3 are highlighted in the figure. The states at various values
of 7 were identified in the rfy,n,) state space. The classical
resonance center line and widths in the action spagdg 6erved
as a template to identify the nature of the quantum states. Among
the four states shown, the sta@&00has the largest variation,
and the state6;30has the smallest variation with For this
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Figure 3. Same as in Figure 2 for states belongingPte= 12. This 00 o 1 2 3
fan is isomorphic to the one & = 6 shown in Figure 2. %

value of the polyad, the critical coupling constant is estimated Figure 4. Velocities of isomorphic states according to the approxima-
to ber. ~ 5.3 x 102 It is clear from Figure 2 that the level tion eq 16, indicated by filled symbols. The value of the coupling

L . - strength is 5x 1072 The circles and triangles correspondRo= 6
velocities corresponding to the states= 0 and 1 are 54 op = 12, respectively. Numerically exact values are shown as
approximately constant beyond the estimatgdHowever, note open symbols.

that as far as the states= 2 and 3 are concerned, the estimate

for 7. is not very accurate. The reason for this underestimation 8.0 | ' ‘ ' \

of 7. has to do with the fact that our analysis was based entirely 6.0 (a)

on a Chirikov criteria and hence essentially classical. The Tle® l

Chirikov estimate is thus insensitive toand only depends on 4.0 B AT

P. A better estimate would neccessarily have to be quantum or u

semiclassical in nature which would account for thele- 20 o AWANAAkAkAkd

pendence of a quantum state. An important observation con- 0.0 IgAh-—- g qae et see

cerning the statés;30is that the asymptotic level velocity, <«

~ 0. However, this state is resonant, and the vanishing level 205 o

velocity is due to the particular form of, for a 1:1 resonance L ) L ,

as discussed below. The particular set of parameters chosen in 40

this section imply that isomorphic quantum states should appear 15.0 ‘ ‘ :

with a polyad spacing of three. Thus, one anticipates that the (b)

specific behaviour of the states with varyingbserved foP [e®

= 6 should manifest at polyad valuBs= 9 and 12 and so on. 100 RN TE T Ty

In Figure 3, we show one such isomorphic fanPat= 12 "."""[A"A'A'T‘r“""

highlighting the four states, isomorphic to thoséat 6, as in () s0f 4 4:'4_4'2'4'42111

Figure 2. For this value of the polyad, the critical coupling is a

estimated to be about 9.8 10-2. Notice the similar vari- 0.0 b

ations of the stategs;vJand |12;vOwith 7. It is interesting to ’

note that the = 0 state and, to some extent, the= 1 state do <

IIEr)eslpect the estimated irrespective of the polyad to which they 50,5 o1 02 o3 04
elong. T

~ Since the states belonging to polyd@s= 6, 9, and 12 are g 16 5. variation of the level velocities with. (a) Results foP =
isomorphic, we can test the approximation (eq 16) in this case. 6 are shown for the various statgvOwith v = 0 (circles),y = 1
According to eq 16 the velocity of a staie + AP;v[can be (squares)y = 2 (up triangles), ana = 3 (left triangles). (b) Same as
approximately obtained by rigidly translating the corresponding in panel a but forP = 12. In both the figures, the asymptotic limit
isomorphic stateP;vCalong the classical resonance line. In result @ — 2v) are shown as straight lines.

Figure 4, we compare the velocities computed with the ] o ] - )
approximation to the actual numerical values for a coupling !N Figure 5, the variations in the velociti& with 7 for the
strength ofr = 5 x 10°2. It is seen that the approximation is states belonglng tB =6 and 12 are s_hown. The veIOC|_t|es are
very good for ther = 0 state and progressively becomes worse P€coming constants for > z, and in accordance with the
asv increases. Incidentally, this indicates that the- 0 state ~ conclusion from the last section, the= 0 states indeed have
is much more localized in the resonance channel as compared®Symptotic velocities, ~ P. More importantly, the asymptotic
to the higherv states. The reasons for this behavior has been Velocitiesv, for states in a given polyad are seen to differ by
discussed earlier and has to do with the fact that the coupling @PProximately a factor of 2. This suggests thautiteependence
strength seen by a stateRt+ AP is larger than that seen by  ©f v« iS quite simple and given by

a state aP. Thus, one computes the velocities for stgfes-

AP;vOat an effective coupling strengtll < 7 within the v(Pv)=P—2v (24)
approximation eq. (16). For the current example of 1:1

parameters, it is easy to show that<{ 7)/r ~ AP/P. Correcting Computation of the level velocities for many different values
for the effective coupling strength leads to very good agreement of the parameters, i.e., different Hamiltonians, establishes the
for all the states. result 24 to be fairly accurate. The comparison for four different
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Figure 6. Comparison of the asymptotic velocity estimae- 2v)
with the computed values,(z¢) for differentHo parameters. In all the
figures,7c = 4 x 107 In panels b and d, the dotted histogram shows
the result forre = 6 x 10°%

1:1 Hamiltonians is shown in Figure 6, where we plot the ratio

Xff)(rc)/(P — 2v) for states with polyad valueB < 15. The
accuracy of the expression for the asymptotic velocity is evident

from the figure. The spread as seen in Figure 6 results from the

dependence of. onv. Thus, for a 1:1 resonancéx’ ~ AP.

An interesting consequence of the above result is that certain

resonant states could exhibit zero level velocityfart z.. For
instance, the statg;3in Figure 2 shows zero level velocity

despite being a resonant state. It is clear that a naive interpreta

tion of the correlation diagram might mislead one to label the
state as nonresonant.

In almost all of the studies on level dynami¢s?! the key
guantities of interest are the variance of the level velocities and
the curvature, i.e.¥, distribution. The variance of the level
velocities is defined as

1 1 2
ofeN) =5 (@) - (ﬁzxgﬂm) (25)

An understanding ofs? is crucial to uncovering possible
universalities in parametric level correlations. Most of the efforts

Keshavamurthy

E(®) ¢

Figure 7. Level dynamics in the nonintegrable case. The variation
with the 1:1 resonance strength is shown with the 1:2 coupling strength
fixed at 5x 1073. The integrable 1:1 fan (solid points) corresponding
to P = 6 (cf. Figure 2) is superimposed for comparison.

IV. Discussion and Summary

The results of the previous sections clearly show that the
fingerprint of a classical resonance in the quantum eigenlevel
dynamics are the diabatic fan structures. Each fan corresponds
to the various statefP;v[]in a polyadP. One can imagine
assigning the quantum states belonging to a particular polyad
by computing the asymptotic level velocities. This, of course,
is an unnecessary excersise for a single-resonance Hamiltonian
but a useful point of view for multiresonant Hamiltonians.
Multiresonant Hamiltonians are classically nonintegrable, and

hence, chaos can play a significant role in the attempts to assign
the high energy states.

An important issue that arises, in the context of the present
work, is the possibility of assigning the states of a multiresonant
system. More specifically, one asks if it is possible to use the
integrable limit fans as a template to identify the dominant
resonance contributing to the structure of an eigenstate. In order
for such a scheme to work, one needs measures for gauging
the extent to which a given state is scarred by the various
underlying resonances. As a first step, with such a goal in mind,
we show the effect of adding a weak 1:2 resonance on the
eigenlevel dynamics considered in the previous section. In
Figures 7 and 8, we show the counterparts of Figures 2 and 3,

toward this end have concentrated on strongly chaotic systemsfespectively, with a weak (coupling strength 08510°%) 1:2

A recent worR?! has discussed the case of systems with mixed

resonance present in addition to the 1:1 resonance. The

phase space. It was observed that the transition to classical chaotégrable limit fans have been shown as points on the same

is accompanied by a corresponding transitionodffrom a
quadratic to lineaN dependence. Having obtained the asymp-
totic level velocities for an integrable 1:1 resonant system we
are in a position to evaluate the varianéér,Np) for the cluster

of states belonging to a polyd® The evaluation is straight-
forward since

2

(P— 2v)* — o (P—2v)
pv=

OZ(TC'NP) = N_

p =

(26)

1
§(N§> -1

and Np = vmax + 1. Thus, 02(zc,Np) ~ N3, which is in
agreement with the recent wotk.

figure. Note that most of the crossings in the integrable limit
have become avoided crossings in this nonintegrable situation.
For the case of integrable limR = 6 (cf. Figure 7),we see
that the 1:2 has had no major effect and the states are essentially
scarred by the 1:1 resonance. In this case, the integrable limit
fan structure is robust through the avoided crossings. This agrees
well with the fact that the location of the 1:2 resonance in the
(I,15) space is such that there is a very weak influence on the
states belonging to tHé = 6 manifold. The number of avoided
crossings increases as one goes up in energy as shown in Figure
8 corresponding to the integrable linkit= 12 case. However,
for the lowv cases, one observes that the integrable fan structure
is fairly robust. This suggests that the 1:1 resonance is
dominating the structure of the eigenstates in this energy regime.
For very large values of the 1:1 coupling parameter one sees,
as expected, a similar behavior as in the integrable situation.
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whenever there is extensive scarring present in the system. For
example, another system where such behavior has been observed
is the hydrogen atom in a strong uniform magnetic ffld.

The results presented in this paper suggest that such solitonic
structures are indeed the fingerprints of an underlying classical
resonance. In this sense, every distinct resonance has its own
solitonic signature, in the form of “solitonic fans”, in the level
dynamics. In earlier work&!87the solitonic features have been
associated with scarring of the eigenstate by periodic orbits.
However, it is fair to expect that scarring in systems with mixed
phase space can also be due to higher dimensional tori. Such a
viewpoint has to be adopted especially in systems where periodic
orbits alone are not sufficient to understand the phase space
; RSN )y structure of the system. For example, in a recent Waok the
> AN SN TANNI 27 assignment of highly excited states of® evidence of scarring

0.0 0.1 0.2 0.3 0.4 by resonant 2-tori is observed in the level dynamics. The
Figure 8. Same as in Figure 7 but for the higher-energy regimes. The nonuniversal nature associated with the solitonic structures
integrable limit P = 12 fan (cf. Figure 3) is superimposed for indicates the possibility of extracting system specific information
comparison. in the multiresonant situations. In particular, one hopes for a
measure which will identify the dominant resonances contribut-
ing to the structure of an eigenstate. Recent wBrik&shave
suggested a measure involving the overlap intensity-level
velocity correlation coefficient which is suitable for exploring
the phase space localization features of eigenstates. Another
suggestioff based on the curvature distribution falls short of
our expectations since information is provided in a overall sense
and not at an individual eigenstate level. A knowledge of the
dominant resonances giving rise to the features of a particular
eigenstate provides information about the expected dynamical
behavior of the system. A key advantage of such an approach
is that the study of three or more degrees of freedom systems
can be undertaken without recourse to the usual route, difficult
if not impossible at the moment, involving the computation,
visualization, and correlation of the Poincaraface of section
and the Husimi distribution functions. Work is in progress in
our group to determine the appropriate measures of scarring
and the assignment of highly excited states of multimode,
multiresonant systems from the viewpoints advanced in this

paper.
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