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The dynamics of the energy eigenvalues of a single resonance, two-mode quantum Hamiltonian with varying
resonance coupling is studied. The resonant quantum states are linked to straight-line parametric level motion
in the level dynamics. On the basis of the analogy to the periodic orbit scarring of eigenstates giving rise to
linear parametric level motion, we suggest that the resonant states give rise to such soliton-like features in
the level dynamics. As a result, resonant states for a given polyad constitute a solitonic “fan” structure
manifesting throughout the energy regime. Isomorphic fans, at specific polyad intervals, are identified for
which the level velocities of the corresponding states are related by a translation along the classical resonance
line. An analysis of the level velocities for isomorphic states indicates that the level velocities of am:n
resonant state beyond a certain critical coupling strength scale with the polyadP asP(m+n)/2. Numerical studies
on a 1:1 resonant system confirm the expected scaling and suggest (P - 2ν) as the asymptotic velocity of a
state|P;ν〉, whereν is the degree of excitation of the state. Persistence of the fan structure on the addition of
another independent resonance leads to the possibility of understanding and assigning highly excited states
via the scars of the independent resonances.

Introduction

Classical-quantum correspondence for resonant systems has
been an area of considerable interest for quite some time and
continues to attract attention from the chemical physics
community.1-4 One of the main motivations for such efforts,
apart from the fundamental nature of the problem and the
ubiquity of resonances in physical phenomena,5 is the fact that
effective resonant Hamiltonians arise naturally in the attempts
to understand the spectra of highly excited polyatomic mol-
ecules.3,6 The dynamics of highly vibrationally excited molecules
is very different as compared to the dynamics at low energies
due to the pronounced manifestation of the anharmonicities. At
such high levels of excitation, the usual low-energy description6

based on harmonic, noninteracting normal modes is too
simplistic. For example, recent studies7 on the bending dynamics
of C2 H2 at around 15 000 cm-1 of internal energy reveals local
bend and counter-rotation modes which are unrelated to the low
energy normal trans and cis bend motions. The marked change
in the dynamics happens at energies where zeroth-order normal
modes begin to interact strongly, mediated by nonlinear
resonances arising from the anharmonicities of the potential.
For instance, large amplitude bending motion in the HCP
molecule have been identified experimentally,8,9 which arise due
to a 1:2 Fermi resonance between the bending and the CP
stretching motions at about 13 800 cm-1 above the ground
state.10 Modes interacting resonantly can exchange energy, and
the presence of many such resonances between the various
modes in a molecule leads to the phenomenon of intramolecular
vibrational energy redistribution (IVR).11-13 The resulting
complicated spectrum has encoded in it the signatures of the
various resonances present in the system. In this sense,
resonances and energy flow are synonymoussthe presence of

one implies the existence of the other. Thus, given the key role
played by resonances in determining the nature of the chemical
reactions, it is not surprising that they are crucial for analyzing
the spectra of highly excited molecules.14,15

It is clear that rationalizing and, hence, assigning the spectral
features of highly excited molecules require a detailed under-
standing of the nature of the eigenstates and eigenvalues of the
resonant system. From a theoretical standpoint, a promising
approach is to study the classical, semiclassical, and quantum
dynamics of the resonant Hamiltonians. This is evident from
the numerous recent studies7,10,16,17on small polyatomics. The
advantage of such a classical-quantum correspondence-based
approach is that the various dynamical routes to IVR can be
identified. A dynamical assignment can then be provided for
the states which offers the possibilities of exploiting potential
mode specific reaction pathways.

The majority of the work done from a classical-quantum
correspondence perspective can be broadly classified into two
main approaches. One approach is to explore the consequences
of the classical resonance on the eigenvalue spectrum,18-33 and
the second pertains to the signatures of the underlying reso-
nances manifesting in the eigenstates of the system.7,10,16,17,35-37

As far as the latter approach is concerned, it has been shown
that a knowledge of the phase space structure of the classical
limit resonant Hamiltonian in terms of the periodic orbits,7,10,17

resonance zones,16,38,43 and higher-dimensional tori is central
to our ability to assign the quantum states. Enormous progress
has been made in the case of single-resonance Hamiltonians.44-52

For example, in such instances, determination of the periodic
orbits and their bifurcation structure44-48 allows one to classify
the eigenstates according to the underlying classical dynamics.
Certain special multimode, multiresonant systems which possess
enough time-independent constants of the motion, i.e., poly-
ads53,54 can also be usefully analyzed from the periodic orbit† Part of the special issue “William H. Miller Festschrift”.
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perspective.7,55,56However, two important observations are that
the required number of polyads might not always exist and
periodic orbits are not sufficient in many instances16 for
understanding the eigenstates. In addition, a significant limitation
comes from the fact that detailed knowledge of the phase space
structure of three or higher degrees of freedom resonant
Hamiltonians is very sparse.57 Even if one has the phase space
structure at hand, techniques such as comparing the surface of
section with the Husimi function58 of a given eigenstate become
very difficult to implement. In this paper, the focus is on the
former approach, which involves identifying the fingerprints of
the various resonances on the eigenenergy spectrum.

A number of researchers have investigated18-22 the effect of
resonances on the energy levels of fixed Hamiltonians. Here,
one studies the system for a fixed value of the coupling strength
and varying energies. Again, impressive results have been
obtained for single-resonance Hamiltonians in terms of under-
standing the spectral features, semiclassical quantization and
analysis of the energy splittings. However, multiresonant
systems have not received much attention from this point of
view. Sizable work has also been done from a different
perspective, wherein one explores the signatures of resonances
on the energy levels as a parameter in the Hamiltonian is
varied.23-34 The importance of such works lies in the fact that
states can be approximately assigned by following the energy
diabats from a known limit to the actual physical Hamil-
tonian.59-61 In such energy correlation or equivalently level
dynamics studies, the focus was predominantly on the nature
of avoided crossings and their distributions. Earlier studies23-27

argued that the avoided crossing between pairs of energy levels
implied that the corresponding states were involved in resonance.
From this viewpoint, overlapping avoided crossings would be
the analogue of overlapping resonances in the underlying
classical system. Thus, it was conjectured23,25 that overlapping
avoided crossings would lead to a criterion for quantum
stochasticity in analogy to the Chirikov criterion62 for classical
stochasticity threshold. Although the conjecture has some
support for time-independent systems perturbed by a periodic
time dependent potential,63 later studies28-34 indicated that states
involved in an isolated avoided crossing were not neccessarily
resonant. In the vicinity of an avoided crossing, the state mixing
could as well be due to quantum tunneling. In fact, dynamical
tunneling64,65 has been proposed66 as a possible route to IVR
in a certain class of molecules. Moreover, in case of multi-
resonant systems, the two state avoided crossing scenario can
get superseded by a three-state chaos-assisted tunneling67-70

process. Energy splittings due to chaos-assisted tunneling are
fairly erratic67,70and in particular can show algebraic dependence
on p rather than the usual exponential dependence. Hence, in
absence of a clear relative measure of the competition between
quantum and classical routes to state mixing, associating an
isolated avoided crossing with the classical resonance is
premature.

Given that avoided crossings do not unambiguously signal
the presence of a resonance, one asks if there is any charac-
teristic pattern in the level dynamics of a Hamiltonian that is
indicative of a resonance. The primary goal of this paper is to
answer the above question. There does exist an earlier work33

wherein one such pattern was identified by investigating the
behavior of the energy levels of a coupled oscillator system as
the corresponding classical system went through a resonance.
The pattern consisted of clusters of levels, each containing a
number of curves that run roughly parallel to one another and
a number of curves that undergo pairwise narrowly avoided

crossings. It was established that the parallel curves and narrowly
avoided curves corresponded to resonant and nonresonant states,
respectively. In this work, we take a different approach and
identify characteristic patterns of the energy levels of a single-
resonance HamiltonianH ) H0+ τV as the resonant strengthτ
is varied. It is now well-known71-73 that the evolution of theN
energy levels with the coupling parameter can be mapped on
to a Hamiltonian system with the energy levels correpsonding
to positions ofN psuedoparticles and the coupling strength
corresponding to a psuedotime variable. The resulting classical
Hamiltonian describing the level and eigenstate dynamics ofH
has been shown73 to be integrable since the equations of motion
constitute a generalized Calogero-Moser74-76 system. Although
we will not make an explicit use of the integrability structure,
the prime focus will be on identifying the fingerprints of a
classical resonance on the level velocities. This choice is
motivated by two factors. The first one has to do with the
numerical observation16 of energy diabats varying linearly at
large values of the coupling constant. The second factor is
related to the extensive work done77 on uncovering universal
and nonuniversal characteristics of nonintegrable Hamiltonians
by systematic studies of the level velocities and their correla-
tions.

We derive an expression for the level velocity associated with
an eigenstate of a single-resonance Hamiltonian (section II). It
is well-known that single-resonance Hamiltonians are classically
integrable due to the existence of a conserved quantity called
as the polyad numberP. Consequently, all of the quantum
eigenstates can be assigned. Analyzing the expression for the
level velocities and noting the finiteness of the polyad number,
one anticipates that the level velocities will, for someτ g τc,
become constants. A rough estimate for the critical coupling
constantτc is provided in section II.A. In general, more than
one resonant state exists for a given value of the polyad, which
is characterized by an excitation index. The level velocities of
the group of states belonging to a specific polyad depend on
the excitation index and give rise to a typical “fan” structure as
τ is varied. On the basis of previous works16 showing the
existence of isomorphic states occurring at definite polyad
intervals, it is expected that the “fan” motif would repeat itself
throughout the energy range. An analysis of the level velocities,
as performed in section II.B, indicates that a simple relationship
exists between the velocities of the isomorphic states at any
givenτ. As a consequence, the velocity of a given state can be
approximately predicted from the velocity of the preceding
isomorphic state. Forτ g τc. the analysis in section II.B suggests
that the asymptotic velocities for a generalm:n resonance scale
with the polyad asP(m+n)/2. In section III, we study a model
two-mode 1:1 Hamiltonian and numerically confirm the predic-
tions. In particular, it is shown that, for a 1:1 resonant state
with excitation indexν, belonging to a polyadP, the asymptotic
velocity is well approximated by (P - 2ν). Section IV concludes
with a discussion on the possibility of using the present method
for a dynamical assignment for the states of a multiresonant
system.

II. Level Dynamics for Single-Resonance Hamiltonians

In this paper, we focus on a two-mode, single-resonance
quantum Hamiltonian of the form

whereH0 is the zeroth order Hamiltonian

H0(n,a,a†) ) H0(n) + τV(a,a†) (1)
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V is the resonant coupling term, andτ is the coupling strength.
The operatorsn, a, and a† are the number, annhilation, and
creation operators for the two modes, respectively, which satisfy
the standard harmonic oscillator relations [ak,al

†] ) δkl. For a
m:n resonance, the form ofV is given by

It is well-known that the above single-resonance Hamiltonian
has a conserved quantity known as the polyad number.53,54This
is due to the fact that the polyad operatorP ) (n/m)n1 + n2

commutes with the HamiltonianH. As a result, the Hamiltonian
is block diagonal with the blocks characterized by the eigen-
values ofP.

In the rest of this paper, we will denote the eigenstates and
the associated eigenvalues of the HamiltonianH by |R(τ)〉 and
xR(τ), respectively, withH(τ)|R(τ)〉 ) xR(τ)|R(τ)〉. The objective
of this work is to study the level dynamics, i.e., the evolution
of the eigenvaluesxR(τ) with resonance coupling strengthτ in
order to identify the signatures of the underlying classical
resonance. The eigenstates and eigenvalues for a givenτ are
obtained by numerically solving the Schro¨dinger equation in
the zeroth order number basis|n〉. Thus, one can express the
eigenstate in terms of the zeroth order number basis as|R(τ)〉
) ∑ncnR(τ)|n〉. Eigenstates of a single-resonance Hamiltonian
have to respect the polyad constraint, and hence, we can be
more precise and write|R(τ)〉 ) ∑nεPcnR(τ)|n〉.

In the study of the level dynamics ofH(τ), an important
quantity is the level velocityx̆R(τ) t dxR/dτ associated with
the state|R(τ)〉. The level velocity for a given state, as obtained
using the Hellmann-Feynman theorem, is

Inserting complete sets of states into eq 4 the expression for
the level velocity can be written as

where we have denoted the matrix element〈n|V|n′〉 by Vnn′.
Due to the polyad constraint, it is clear that the productcnR

/ cn′R
vanishes unlessP ) P′. In addition, asVnn′ also vanishes ifn
) n′, one obtains

as the level velocity associated with an eigenstate|R(τ)〉. Note
that the presence of the matrix elementVnn′ gives a strong local
character to the level velocity sinceVnn′ ) 0 if n andn′ are not
connected by the resonance. It is clear from the above expression
that if the state|R(τ)〉 is nonresonant, thenx̆R(τ) ) 0 and hence,
as expected, there is no change in the energy of the state as the
coupling strength is varied. In what follows, we will take all
the coefficients to be real without any loss of generality.

A few important observations can be made about the level
dynamics ofH by understanding the low and highτ limits of
eq 6. First, note that the entireτ dependence is in the basis
coefficients. For small values ofτ, most of the states will be
nonresonant, andx̆R(τ) ≈ 0. As the value ofτ is increased, the
coefficientscnR(τ) also change, making the level velocities finite
for states that come under the influence of the resonance.
However, a finite value of the polyad associated with a resonant
state implies that the number of zeroth order states that
participate and contribute to the resonant eigenstate is finite.
This leads one to expect that beyond a certain critical coupling
strengthτc, the level velocity should become relatively insensi-
tive to changes inτ. Thus, in the limit of largeτ the level
velocities are constants, i.e.,x̆R(τ) ≈ υR, with υR being
independent ofτ. An estimate forυR would require one to know
the asymptotic value of the basis coefficientscnR(τ) for largeτ.
A tempting choice is to setcnR(τ) ≈ NP

-1/2 for all n, with NP

denoting the number of zeroth order states in a given polyadP.
However, such a choice is erroneous since a single-resonance
Hamiltonian is classically integrable due to the existence of the
polyad. Hence, one expects a regular spectrum associated with
the quantum Hamiltonian. On the other hand, only in the
extreme statistical limit does one anticipate78 cnR(τ) ≈ NP

-1/2.
Thus, for an integrable system, in general, such an approxima-
tion is invalid. Nevertheless, it is reasonable to assume that the
coefficients and hence the product of coefficients in the
expression forx̆R(τ) attain a limiting value aroundτc leading to
constant level velocities forτ g τc. One way of finding the
asymptotic value of the coefficients is to investigate the large
τ asymptotics for the corresponding Schro¨dinger equation which
is known,79 in a certain limit, to be the Mathieu equation. Such
an approach would also yield the critical coupling constantτc,
which is of significant interest for understanding the level
dynamics of the system. In this work, we do not perform such
an analysis and provide a rough estimate forτc, with the focus
being more on a phenomenological description of the level
dynamics. Analyzing the expression forx̆R(τ) for specific classes
of resonant states, as shown below, one predicts that fairly
simple expressions should exist forυR.

A. Estimate for τc Based on the Chirikov Approximation.
As pointed out in the previous section, the constancy of the
level velocity forτ g τc is due to the finiteness ofP. Intutively,
one anticipates that if the classical resonance widthw(τ) for τ
) τc is on the order of the number of zeroth order quantum
states for a givenP, then the coefficientscnR(τ) of the state
|R(τ)〉 would not change much with increasingτ. This suggests
that τc can be estimated by settingw(τc) = NP, with w(τ)
obtained by a Chirikov analysis62 of the classical resonance
Hamiltonian.

To obtainw(τ), we construct the classical limit Hamiltonian
for the two-mode quantum HamiltonianH(τ) by using the
standard correspondence80

where (I ,θ) are the classical action-angle variables. The
resulting classical limitm:n resonant Hamiltonian is

The two-dimensional Hamiltonian above can be transformed
to a one-dimensional Hamiltonian by using the generating

H0(n) ) ∑
k)1,2

ωk (nk +
1

2) + ∑
k)1,2

Rkk(nk +
1

2)2

+

R12(n1 +
1

2)(n2 +
1

2) (2)

V ) (a1)
m(a2

†)n + (a2)n(a1
†)m (3)

x̆R(τ) ) 〈R(τ)|V|R(τ)〉 (4)

x̆R(τ) ) ∑
nεP

∑
n′εP′

〈R(τ)|n〉〈n|V|n′〉〈n′|R(τ)〉

) ∑
nεP

∑
n′εP′

cnR
/ (τ) cn′R(τ)Vnn′ (5)

x̆R(τ) ) ∑
n*n′

n,n′εP

cnR
/ (τ)cn′R(τ)Vnn′ (6)

a T I1/2 e-iθ a† T I1/2 e-iθ (7)

H ) ∑
k)1,2

(ωkIk + Rk kIk
2) + R12I1I2 +

2τxI1
m I2

n cos(mθ1 - nθ2) (8)
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function81

which generates a canonical transformation (I ,θ) f (I,JF,φ,F).
The resulting one-dimensional classical limit Hamiltonian is

with C ) ω2I + R22I 2, Ω ) nω2 - mω1, Q ) 2nR22 - mR12,
γ ) m2R11 + n2R22 - mnR12, andτj ) (mmnn2-(m+n))1/2τ. It is
clear that the actionI ) (n/m)I1 + I2 is a constant of the motion.
Thus, the classical limit Hamiltonian is integrable, andI is the
classical analogue of the polyad numberP.

To estimate the resonance width, we expanded the one-
dimensional classical Hamiltonian about the resonant value of
JF ) JF

r ) γ-1(Ω + QI) to obtain the resonant Hamiltonian

The HamiltonianHr is recognized to be the standard one-
dimensional pendulum Hamiltonian,62,81 and thus, the width is
given by

At this stage, we setw(τc) = NP to obtain an estimate for the
critical coupling constant as

with rmn ) (28-(m+n))-1/2. For single-resonance systems,NP

scales linearly withP, and hence, the critical coupling scales
as P and xP for the 1:1 and 1:2 resonant systems, respec-
tively. On the classical side, it is expected that the Poincare´
surface of section should be filled up with resonant tori forτ ∼
τc.

B. Level Velocities for Isomorphic States.The states of a
single-resonance Hamiltonian can be completely assigned
because of the existence of the polyad numberP. For a given
value of P, there can be many resonant states, and the total
number of states is related to the classical widthw(τ) of the
resonance zone. The manifold of resonant states for fixedP
can be characterized by an excitation quantum numberν ) 0,
1, ..., related to the number of nodes for the state. Thus, a general
resonant state will be denoted by|P;ν〉, with an associated level
velocity x̆R

(ν)(τ;P).
Recent work16,82 has shown that the slope of the classical

resonance center line, as viewed in the quantum discreten space,
is an important parameter for understanding the resonant states.
In particular, as is well-known, quantum states organize
themselves around the classical resonance line. However, a more
detailed observation is that isomorphic resonant states appear
with a periodicity identical to that of the slope of the classical
resonance line. These states are isomorphic in the sense that
they have very similar amplitude distributions in the zeroth order
basis. Moreover, a study of the Husimi distribution functions
of the isomorphic states indicated16 that they “live” in identical,
resonant, regions of the phase space. It is thus possible to
organize the entire set of states in terms of such isomorphic

families. An analysis of the single-resonance Schro¨dinger
equation, in terms of Floquet solutions of the resulting Mathieu
equation, reveals82 that such isomorphic states appear with a
polyad spacing∆P ) (mP + n) for a generalm:n case. The
classical-quantum correspondence is highlighted by the appear-
ance of the slope

of the classical resonance line in the expression for∆P. Clearly,
the slopeP itself is a function of the anharmonicity parameters
involved in the zeroth order HamiltonianH0.

The above discussion suggests that the level velocities for
isomorphic states should be related in a simple fashion. Consider
two isomorphic states which belong to the polyadsP andP +
∆P. The basis coefficients of these states are nonzero forn ∈P
andnj ∈P + ∆P, respectively. Since the states are isomorphic,
one expects

In the above equation,nj ) n + dP, with a similar expression
for nj′ anddP ) (m,mP ). In other words, a state at polyadP is
displaced along the classical resonance line to a isomorphic state
at polyadP + ∆P. In general, the approximation eq 15 is valid
for moderate values of the coupling strengthτ. This is due to
the fact that the existence of isomorphic states requires the
resonance width to vary slowly over the entire action space.
Typically, the resonance width increases as one goes to higher
energies (hence actions), and thus, the resonance strength felt
by states atP+∆P can be substantially larger. This leads to a
breakdown of the approximation since the basis coefficients at
n as compared to those atn + dP are quite different. It is
possible to come up with corrections to eq 15, but we will not
pursue such schemes in this work. However, it is important to
note that for states that exhibit localization at anyP, the
approximation is a valid one, and the level velocities, as shown
below, can indicate the existence of families of localized
isomorphic states.

Within the approximation eq 15, one immediately obtains
the level velocity of the isomorphic state|P + ∆P;ν〉 as

To relate the level velocities of two isomorphic states, consider
the difference in the velocities

The matrix elementVnn′ for a generalm:n resonance has the
standard form

whereV(n1,n2) andVh(n1,n2) are polynomials of orderm andn

F2(I,JF,φ,F) ) 1
2
JF(mθ1 - nθ2) + Iθ2 (9)

H ) γ
4
JF

2 - 1
2
(Ω + QI)JF + C + 2τj JF

m/2(2I
n

- JF)n/2
cos 2F

(10)

Hr(I,δJF,F) t H(I,JF
r+δJF,F) - H0(I,JF

r
) ≈

1
4
γ(δJF)

2 + 2τj(JF
r
)m/2(2I

n
- JF

r)n/2
cos 2F (11)

w(τ) ) (16τj
γ )1/2

(JF
r )m/4(2I

n
- JF

r )n/4
(12)

τc = rmnγ NP
2(m JF

r )-m/2(2I - n JF
r )-n/2 (13)

P t
nR12-2mR11

mR12-2nR22
(14)

cnR
(ν)(τ)cn′R

(ν) (τ) ≈ cnjR
(ν)(τ)cnj′R

(ν) (τ) (15)

x̆R
(ν)(τ;P + ∆P) ) ∑

nj*nj′

nj,nj′∈P+∆P

cnjR
(ν)(τ)cnj′R

(ν) (τ)Vnjnj′

≈ ∑
n*n′

n,n′∈P

cnR
(ν)(τ)cn′R

(ν) (τ)Vn + dp, n′ + dp
(16)

δx̆R
(ν)(τ) ) x̆R

(ν)(τ;P+∆P) - x̆R
(ν)(τ;P)

≈ ∑
n,n′

n,n′∈P

cnR
(ν)(τ)cn′R

(ν) (τ)[Vn+dp,n′+dp
- Vn,n′] (17)

Vnn′ ) xV(n1,n2)δn′1,n1-mδn′2,n2+n + xVh(n1,n2)δn′1,n1+mδn′2,n2-n

(18)
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in n1 and n2, respectively. The form ofVnn′ suggests that the
second-order variation inVnn′ with n is fairly small, i.e.,∆2V
∼ O(1/n). Thus, the quantity (Vn+dp,n′+dp - Vn,n′) is essentially
constant over a range ofn and depends primarily ondP andP.
This implies that one can write

where the form of the functionf is specific to the resonance
and

Hence, given the level velocity of the state|P;ν〉, the above
relation shows that one can approximately predict the level
velocity of the isomorphic state|P + ∆P;ν〉 with ∆P ) (mP +
n) for a givenτ. However, at this level of approximation, the
value of the predicted level velocity is accurate for localized
states. In particular, here one expects the predicted velocities
to be accurate for theν ) 0 states only. The specific form of
the functionf can be worked out for the various resonances,
and for a 1:1 resonance, it is easy to show that to leading order

Thus, for the isomorphic states withν ) 0 corresponding to a
1:1 resonance, we have the result thatδx̆R

(0)(τ) ≈ cR
(0)(τ)∆P.

Note that the above analysis is incomplete in the sense that
the ν dependence of the level velocities is not obtained. As
discussed earlier, the determination ofcR

(ν)(τ) in the large
coupling limit is nontrivial. However, the eq 20 can be
interpreted83 as the overlap between the state and another
fictitious state at the same value ofP, obtained by shifting the
actual state. This suggests, at least forτ ∼ τc, that the state
with ν ) 0 has the maximum velocity. This interpretation in
terms of overlaps suggests thatcR

(0)(τ) ≈ 1 for τ g τc.
Increasingν will lead to smaller overlap due to the sign
mismatches, and hence, the velocity decreases with increasing
ν. Thus, for a given set of states in a polyadP, the asymptotic
velocities decrease with increasingν, and this gives rise to a
diabatic fan-like structure in the energy correlation diagram.
For now, in the large coupling limit, we can combine the result
cR

(0) ≈ 1 with δx̆R
(0) = cR

(0)∆P to obtain the asymptotic level
velocity of the 1:1 resonant state|P;0〉 as

As discussed above,υR for states with nonzeroν will decrease
with increasingν. In the next section, computational studies
suggest that in the large coupling limit the asymptotic velocity
of a 1:1 state|P;ν〉 is approximated rather well byυR ≈ (P -
2ν). Analysis along similar lines for a generalm:n resonance
system indicates that in the large coupling limit the asymptotic
velocity of a state|P;0〉 obeys the rule

III. Example of a Model 1:1 System

In this section, we compute level velocities for a model 1:1
resonant Hamiltonian withω1 ) 1, ω2 ) 0.8, R11 ) -0.04,
R12 ) 0, andR22 ) -0.02. With these parameter values, the
slope of the classical resonance line isP ) +2. Thus
isomorphic states are expected with a polyad spacing∆P ) 3.

In Figure 1, we show the variation of the energies with the
resonance strengthτ. Two important features can be identified
from Figure 1. First, the cluster of states associated with a polyad
P is seen to form a fan-like structure. The states in this fan are
undergoing large variations with the coupling strengthτ. Similar-
looking fans appear with a periodicity of 2, which is a
consequence of the slope of the classical resonance line. It is
expected that isomorphic states will show isomorphic level
dynamics. The second observation, evident from Figure 1, is
that for largeτ the level velocities are becoming constants. In
fact, for large values ofτ, one sees streaks of straight lines onlys
some with negative slopes and others with positive slopes. As
discussed in the previous section, the negative slopes, i.e.,
negative asymptotic level velocities are associated with largeν
states.

We now focus on one of the fans to show its structure and
understand theν dependence of the asymptotic level velocities
υR. In Figure 2, the fan associated with the states belonging to
the polyadP ) 6 is shown. Four states corresponding toν )
0,1,2,3 are highlighted in the figure. The states at various values
of τ were identified in the (n1,n2) state space. The classical
resonance center line and widths in the action space (I1,I2) served
as a template to identify the nature of the quantum states. Among
the four states shown, the state|6;0〉 has the largest variation,
and the state|6;3〉 has the smallest variation withτ. For this

Figure 1. Level dynamics for the 1:1 resonance system. The fans
associated with each polyad are indicated by *. The respective polyad
values are also shown in the figure. The number of states in each fan
increases since the resonance width increases with increasing energy.

Figure 2. Level dynamics for the integrable 1:1 case. The fan formed
by the states belonging to the polyadP ) 6 is shown. The solid points
correspond to resonant states as identified in the (I1,I2) space.

δx̆R
(ν)(τ) ≈ 2cR

(ν)(τ)f(P,P) (19)

cR
(ν)(τ) t ∑

n1,n2∈P

cn1,n2;R
(ν) (τ)cn1-m,n2+n;R

(ν) (τ) (20)

f(P ,P) ≈ 1
2
(1 + P ) ) 1

2
∆P (21)

υR t x̆R
(0) ≈ P (22)

υR ∝ P(m+n)/2 (23)
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value of the polyad, the critical coupling constant is estimated
to beτc ≈ 5.3 × 10-2. It is clear from Figure 2 that the level
velocities corresponding to the statesν ) 0 and 1 are
approximately constant beyond the estimatedτc. However, note
that as far as the statesν ) 2 and 3 are concerned, the estimate
for τc is not very accurate. The reason for this underestimation
of τc has to do with the fact that our analysis was based entirely
on a Chirikov criteria and hence essentially classical. The
Chirikov estimate is thus insensitive toν and only depends on
P. A better estimate would neccessarily have to be quantum or
semiclassical in nature which would account for theν de-
pendence of a quantum state. An important observation con-
cerning the state|6;3〉 is that the asymptotic level velocityυR
≈ 0. However, this state is resonant, and the vanishing level
velocity is due to the particular form ofυR for a 1:1 resonance
as discussed below. The particular set of parameters chosen in
this section imply that isomorphic quantum states should appear
with a polyad spacing of three. Thus, one anticipates that the
specific behaviour of the states with varyingτ observed forP
) 6 should manifest at polyad valuesP ) 9 and 12 and so on.
In Figure 3, we show one such isomorphic fan atP ) 12
highlighting the four states, isomorphic to those atP ) 6, as in
Figure 2. For this value of the polyad, the critical coupling is
estimated to be about 9.8× 10-2. Notice the similar vari-
ations of the states|6;ν〉 and |12;ν〉 with τ. It is interesting to
note that theν ) 0 state and, to some extent, theν ) 1 state do
respect the estimatedτc irrespective of the polyad to which they
belong.

Since the states belonging to polyadsP ) 6, 9, and 12 are
isomorphic, we can test the approximation (eq 16) in this case.
According to eq 16 the velocity of a state|P + ∆P;ν〉 can be
approximately obtained by rigidly translating the corresponding
isomorphic state|P;ν〉 along the classical resonance line. In
Figure 4, we compare the velocities computed with the
approximation to the actual numerical values for a coupling
strength ofτ ) 5 × 10-2. It is seen that the approximation is
very good for theν ) 0 state and progressively becomes worse
asν increases. Incidentally, this indicates that theν ) 0 state
is much more localized in the resonance channel as compared
to the higherν states. The reasons for this behavior has been
discussed earlier and has to do with the fact that the coupling
strength seen by a state atP + ∆P is larger than that seen by
a state atP. Thus, one computes the velocities for states|P +
∆P;ν〉 at an effective coupling strengthτ′ < τ within the
approximation eq. (16). For the current example of 1:1
parameters, it is easy to show that (τ′ - τ)/τ ≈ ∆P/P. Correcting
for the effective coupling strength leads to very good agreement
for all the states.

In Figure 5, the variations in the velocitiesx̆R with τ for the
states belonging toP ) 6 and 12 are shown. The velocities are
becoming constants forτ g τc, and in accordance with the
conclusion from the last section, theν ) 0 states indeed have
asymptotic velocitiesυR ≈ P. More importantly, the asymptotic
velocitiesυR for states in a given polyad are seen to differ by
approximately a factor of 2. This suggests that theν dependence
of υR is quite simple and given by

Computation of the level velocities for many different values
of the parameters, i.e., different Hamiltonians, establishes the
result 24 to be fairly accurate. The comparison for four different

Figure 3. Same as in Figure 2 for states belonging toP ) 12. This
fan is isomorphic to the one atP ) 6 shown in Figure 2.

Figure 4. Velocities of isomorphic states according to the approxima-
tion eq 16, indicated by filled symbols. The value of the coupling
strength is 5× 10-2. The circles and triangles correspond toP ) 6
and toP ) 12, respectively. Numerically exact values are shown as
open symbols.

Figure 5. Variation of the level velocities withτ. (a) Results forP )
6 are shown for the various states|P;ν〉 with ν ) 0 (circles),ν ) 1
(squares),ν ) 2 (up triangles), andν ) 3 (left triangles). (b) Same as
in panel a but forP ) 12. In both the figures, the asymptotic limit
result (P - 2ν) are shown as straight lines.

υR(P;ν) ) P - 2ν (24)
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1:1 Hamiltonians is shown in Figure 6, where we plot the ratio
x̆R

(ν)(τc)/(P - 2ν) for states with polyad valuesP e 15. The
accuracy of the expression for the asymptotic velocity is evident
from the figure. The spread as seen in Figure 6 results from the
dependence ofτc on ν. Thus, for a 1:1 resonance,δx̆R

(ν) ≈ ∆P.
An interesting consequence of the above result is that certain
resonant states could exhibit zero level velocity forτ g τc. For
instance, the state|6;3〉 in Figure 2 shows zero level velocity
despite being a resonant state. It is clear that a naive interpreta-
tion of the correlation diagram might mislead one to label the
state as nonresonant.

In almost all of the studies on level dynamics,84-91 the key
quantities of interest are the variance of the level velocities and
the curvature, i.e.,ẍR distribution. The variance of the level
velocities is defined as

An understanding ofσ2 is crucial to uncovering possible
universalities in parametric level correlations. Most of the efforts
toward this end have concentrated on strongly chaotic systems.
A recent work91 has discussed the case of systems with mixed
phase space. It was observed that the transition to classical chaos
is accompanied by a corresponding transition ofσ2 from a
quadratic to linearN dependence. Having obtained the asymp-
totic level velocities for an integrable 1:1 resonant system we
are in a position to evaluate the varianceσ2(τc,NP) for the cluster
of states belonging to a polyadP. The evaluation is straight-
forward since

and NP ) νmax + 1. Thus, σ2(τc,NP) ∼ NP
2, which is in

agreement with the recent work.91

IV. Discussion and Summary

The results of the previous sections clearly show that the
fingerprint of a classical resonance in the quantum eigenlevel
dynamics are the diabatic fan structures. Each fan corresponds
to the various states|P;ν〉 in a polyadP. One can imagine
assigning the quantum states belonging to a particular polyad
by computing the asymptotic level velocities. This, of course,
is an unnecessary excersise for a single-resonance Hamiltonian
but a useful point of view for multiresonant Hamiltonians.
Multiresonant Hamiltonians are classically nonintegrable, and
hence, chaos can play a significant role in the attempts to assign
the high energy states.

An important issue that arises, in the context of the present
work, is the possibility of assigning the states of a multiresonant
system. More specifically, one asks if it is possible to use the
integrable limit fans as a template to identify the dominant
resonance contributing to the structure of an eigenstate. In order
for such a scheme to work, one needs measures for gauging
the extent to which a given state is scarred by the various
underlying resonances. As a first step, with such a goal in mind,
we show the effect of adding a weak 1:2 resonance on the
eigenlevel dynamics considered in the previous section. In
Figures 7 and 8, we show the counterparts of Figures 2 and 3,
respectively, with a weak (coupling strength of 5× 10-3) 1:2
resonance present in addition to the 1:1 resonance. The
integrable limit fans have been shown as points on the same
figure. Note that most of the crossings in the integrable limit
have become avoided crossings in this nonintegrable situation.

For the case of integrable limitP ) 6 (cf. Figure 7),we see
that the 1:2 has had no major effect and the states are essentially
scarred by the 1:1 resonance. In this case, the integrable limit
fan structure is robust through the avoided crossings. This agrees
well with the fact that the location of the 1:2 resonance in the
(I1,I2) space is such that there is a very weak influence on the
states belonging to theP ) 6 manifold. The number of avoided
crossings increases as one goes up in energy as shown in Figure
8 corresponding to the integrable limitP ) 12 case. However,
for the lowν cases, one observes that the integrable fan structure
is fairly robust. This suggests that the 1:1 resonance is
dominating the structure of the eigenstates in this energy regime.
For very large values of the 1:1 coupling parameter one sees,
as expected, a similar behavior as in the integrable situation.

Figure 6. Comparison of the asymptotic velocity estimate (P - 2ν)
with the computed valuesx̆R(τc) for differentH0 parameters. In all the
figures,τc ) 4 × 10-1. In panels b and d, the dotted histogram shows
the result forτc ) 6 × 10-1.

σ2(τ,N) )
1

N
∑

R
(x̆R

(ν)(τ))2 - (1

N
∑

R
x̆R

(ν)(τ))2

(25)

σ2(τc,NP) )
1

NP
∑
ν)0

νmax

(P - 2ν)2 - [ 1

NP
∑
ν)0

νmax

(P - 2ν)]2

) 1
3
(NP

2 - 1) (26)

Figure 7. Level dynamics in the nonintegrable case. The variation
with the 1:1 resonance strength is shown with the 1:2 coupling strength
fixed at 5× 10-3. The integrable 1:1 fan (solid points) corresponding
to P ) 6 (cf. Figure 2) is superimposed for comparison.
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The important point, however, is that the linear variation with
coupling can be clearly seen even in the nonintegrable situation.

The nature of the classical dynamics is illustrated in Figure
9 as a Poincare´ surface of section at energies approximately
corresponding to theP ) 12 case. Note that the linear variation
of the energy levels persists despite the presence of extensive
stochasticity in the phase space. This indicates that the states
are getting scarred by the resonance. A similar observation has
been made84,87 in the context of level dynamics of the stadium
billiard system. In the stadium billiard, the presence of the
bouncing ball periodic orbits leads to parametric level motion
running as straight lines. These linearly varying level curves
were identified84 as soliton-like structures and have been linked
to the existence of extensive scarring of the eigenstates by the
classical periodic orbits. This is in turn reflected in the curvature
distribution as an excess contribution, over the universal
prediction, around the small curvature regions.87

It is now known that the small curvature distribution is
nonuniversal, i.e., system-specific. In fact, one now anticipates
that the solitonic structures will arise in a level dynamics

whenever there is extensive scarring present in the system. For
example, another system where such behavior has been observed
is the hydrogen atom in a strong uniform magnetic field.87

The results presented in this paper suggest that such solitonic
structures are indeed the fingerprints of an underlying classical
resonance. In this sense, every distinct resonance has its own
solitonic signature, in the form of “solitonic fans”, in the level
dynamics. In earlier works,84,87the solitonic features have been
associated with scarring of the eigenstate by periodic orbits.
However, it is fair to expect that scarring in systems with mixed
phase space can also be due to higher dimensional tori. Such a
viewpoint has to be adopted especially in systems where periodic
orbits alone are not sufficient to understand the phase space
structure of the system. For example, in a recent work16 on the
assignment of highly excited states of H2O, evidence of scarring
by resonant 2-tori is observed in the level dynamics. The
nonuniversal nature associated with the solitonic structures
indicates the possibility of extracting system specific information
in the multiresonant situations. In particular, one hopes for a
measure which will identify the dominant resonances contribut-
ing to the structure of an eigenstate. Recent works92,93 have
suggested a measure involving the overlap intensity-level
velocity correlation coefficient which is suitable for exploring
the phase space localization features of eigenstates. Another
suggestion87 based on the curvature distribution falls short of
our expectations since information is provided in a overall sense
and not at an individual eigenstate level. A knowledge of the
dominant resonances giving rise to the features of a particular
eigenstate provides information about the expected dynamical
behavior of the system. A key advantage of such an approach
is that the study of three or more degrees of freedom systems
can be undertaken without recourse to the usual route, difficult
if not impossible at the moment, involving the computation,
visualization, and correlation of the Poincare´ surface of section
and the Husimi distribution functions. Work is in progress in
our group to determine the appropriate measures of scarring
and the assignment of highly excited states of multimode,
multiresonant systems from the viewpoints advanced in this
paper.
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